
Substation Beta (SSB) v1.0
Modern subtitles

File format & syntax
File encoding: text-only; UTF-8
Line breaks: Windows (CRLF); Linux (LF)
Data layout: line-based
Ignore empty lines: yes
Comments: lines beginning with //
Syntax errors: Warnings display depends on
implementation

Sections
SSB scripts are separated in sections for different
properties. Sections begin with a header. It’s a name,
starting with character #.
They can be in any order but following is recommend:

#INFO
Meta information.
#TARGET
Target frame dimensions and other properties.
#MACROS
Base macros to complement render data. Use this to create
base styling for your events.
#EVENTS
Render data & conditions.
#RESOURCES
Describes all resources like textures and fonts.

Info section
The meta sections contains some side informations and has
nothing to do what’s rendered at the end. It’s just
interesting for editors.
Fields begin with a name, followed by “: ” and the value.
There’re no constraints but best practices:

Title
Script title.
Author
Script author.
Description
Script description.
Version
Script version.

Target section
Contains size information for the canvas that will be
rendered on. On differences to the actual material, will be
scaled to fit. Fields begin with a name, followed by “: ” and
the value.
Valid fields for frame are...

Width
Target frame width.
Height
Target frame height.
Depth
Influences geometries on 3D transformation. Positive
Integer.
View
Perspective of the view. Can be ‘orthogonal’ or ‘perspective’.
Defaults is ‘perspective’.

Macros section
In the macros section you can define collections of tags to
use them later. Use these macros to generate base stylings
for your events. Macros begin with an unique identifier
name, followed by “: ” and the associated text.

An example:
default: [font=Open Sans;font-size=12]
green: [color=00FF00]

Usage:
5:0.0-2:5:0.0|default||${green}example text

Resources section
Usually defined at the end of the script due to possibly
being very long. This sections contains links to the file
system or base64 encoded resources like fonts or textures.
You can define texture and font resources in the following
manner:

Texture
Texture: TEXTURE_ID,data|url,string
Fonts
Font: FONT_FAMILY,style,data|url,string

FONT_FAMILY is just the name you choose, it must not have
a “,” in the name though.
Style must be either ‘regular’, ‘bold’, ‘italic’ or ‘bold-italic’.

Events section
The events section contains rendering data and is the core of this format.
Each line is structured this way:
<START_TIME>-<END_TIME>|<MACRO>|<NOTE>|<TEXT>
<START_TIME> and <END_TIME> are timestamps for a time range when to render.

Timestamp structure from right to left:
milliseconds -> DOT -> seconds -> COLON -> minutes -> COLON -> hours
Units don’t have to be written completely, so following two examples are valid:
12:3:4.56
0
Hours limit is 99, but that should be enough for nearly all purposes.

Instead of <START_TIME>-<END_TIME> you could also define an <EVENT> as an indicator when the line should be shown.
Tags can be passed to the renderer to control which lines are shown at any given time.

<EVENT> tags are just strings with single quotation marks around them:
‘event-id’

<MACRO> is a style identifier name, mentioned in Macros section. The content of the chosen macro will be prepended to
<TEXT>. This is the base macro for this event and can be seen as the base styling of it.
<NOTE> is just a note for editors, nothing more.
<TEXT> is the description what to render. It’s a combination of styling tags and geometries.
Tags are enclosed by brackets [], singles ones parted by “;”, everything else are geometries.
Additionally, content of macros can be inserted by $<MACRO_NAME>. Insertions are limited by the renderer
implementation.

Geometries
Geometries are the render source. Their appearance is influenced by styling tags.
Different geometry types are usable:

Text
Plain text. Line breaks are to write as \n, [are to escape with \.
Example: Hello world!\n\[Hallo Welt!\]
Points
Floating point number pairs as center coordinates for pixels and circles.
Example: 0 100 -50 -.125
Path
Description for a 2D graphics path. Segments of one type begin with a specifier, followed by necessary values.

Example: m 0 0 l 100 0 100 100.5 b 50 200 0 100 0 20 a 30 40 -45.5 c

Type Specifier Values per segment

Movement m 1 target point

Line l 1 end point

Bezier curve b 2 controls points + 1 end point

Arc a 1 control point + 1 number as degree

Close c

Tags
Tags define styling parameters for geometries or the type of themself. They come with a type name, followed by “=” and one or more values.

Font
font=Liberation Sans

Name of font for text rendering.
size=20

Geometry size (in pixels) depending on
mode.

bold=n
Font decoration.
‘y’ for bold, ‘n’ for normal.

italic=n
underline=n
strikeout=n

Position
position=0,0 | 0,0,0

Position on screen (2D or 3D).
alignment=20,30 | 5

Alignment of geometry position.
Can be either standard numpad
alignments (1-9) or two numbers (0-100) in
percentage.

margin=10 | 10,20,20,10
Margin to screen edges. Either all edges in
one number or each edge seperately (top,
right, bottom, left).

margin-top=10
margin-right=20
margin-bottom=20
margin-left=10
wrap-style=space

Defines how the wrapper should handle
breaking text into new lines. Can be
‘space’, ‘character’ or ‘nowrap’.

direction=ltr
Direction of text rendering.
Can be ltr, rtl, ttb and btt
(left-to-right, right-to-left, top-to-bottom,
bottom-to-top).

space=0 | 0,0
Space between geometries/lines.

space-h=10
space-v=20
rotate-x=0
rotate-y=0
rotate-z=0

Geometry rotation on target axis in
degree.

scale=1,1,1
scale-x=1
scale-y=1
scale-z=1

Geometry scale on target axis in
percentage.

translate=0,0,0
translate-x=0
translate-y=0
translate-z=0

Geometry translation on target in pixels.
shear=0,0
shear-x=0
shear-y=0

Geometry shearing on target as weight.
matrix=1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1

Matrix for transformation to be set.
reset

Resets matrix, which resets position,
rotate, scale and translate.

Geometry
mode=text

Mode can be ‘text’, ‘shape’ or ‘points’.
border=2 | 2,2

Border width of geometry.
border-h=2
border-v=2
join=round

Border and line join style. Can be round, bevel or
miter.

cap=round
Border and line cap style. Can be round,
butt or square.

Textures
texture=<RESOURCE_ID>

Texture on geometry. Texturing can be enabled
by valid RESOURCE_ID and disabled by an invalid
one.

texfill=1,2,3,4 | 0,0,1,0,pad
Texture position (1,2) in percent, size (3,4) in
percent and wrapping (pad).

Wrapping can be pad, clamp, repeat and mirror.

Color
color=FFFFFF |
FFFFFF,FFFFFF |
FFFFFF,FFFFFF,FFFFFF |
FFFFFF,FFFFFF,FFFFFF,FFFFFF |
FFFFFF,FFFFFF,FFFFFF,FFFFFF,FFFFFF

Color for geometry. Can be mono, left-to-right,
left-to-mid-to-right, 4-corners gradient or 4-
corners + center gradient.

bordercolor=FFFFFF |
FFFFFF,FFFFFF |
FFFFFF,FFFFFF,FFFFFF |
FFFFFF,FFFFFF,FFFFFF,FFFFFF |
FFFFFF,FFFFFF,FFFFFF,FFFFFF,FFFFFF
alpha=FF |
FF,FF |
FF,FF,FF |
FF,FF,FF,FF |
FF,FF,FF,FF,FF

Alpha for geometry. Can be mono, left-to-right,
left-to-mid-to-right, 4-corners gradient or 4-
corners + center gradient.

borderalpha=FF |
FF,FF |
FF,FF,FF |
FF,FF,FF,FF |
FF,FF,FF,FF,FF

Rastering
blur=0,0

Gaussian blur on geometry and border.
blur-h=0
blur-v=0
target=frame

Swaps target on rendering.
Can be frame or mask.
Drawing on mask uses alpha value instead of
color.

mask-mode=normal
Defines how the mask is going to be applied
on the current render process.
Normal means every pixel with alpha=255 will
not be visible, invert means every pixel with
alpha=0 will not be visible.

mask-clear
Resets all value in the mask with 0.

blend=overlay
Blending mode.
Can be ‘add’, ‘subtract’, ‘multiply’, ‘invert’,
‘difference’ or ‘screen’.

Animation
animate=
[color=000000;translate-x=20]
animate=
t,[color=000000;translate-x=20]
animate=
0,1000,sin(t*pi),[color=000000]

Interpolate between two values in a given
timeframe with a specific acceleration
function.

Karaoke
k=100

Tag for how long a sylable is sung in
milliseconds.

kset=0
Reset karaoke time of event.

kcolor=FF00FF
Color highlight of karaoke effect.

Example
#INFO
Title: My new project
Author: Youka
Version: 16.06.2012
Description: First concept of a new render format.

#TARGET
Width: 1280
Height: 720
Depth: 1000
View: perspective

#MACROS
Default: [bold=y]
Mine: [bold=n;color=FF0000]
Another: [Mine;position=100,200,-1;rotate-z=180]I'm a

#EVENTS
//0-2.0|||This line is a comment over 2 seconds!
2.0-5:0.0|Another|Hello, i'm a note!|red, rotated\ntext over multiple lines.
5:0.0-2:5:0.0|Mine|Draw sth.|[mode=shape; texture=RAMEN]m 0 0 l 50.5 0 50.5 20.125 0 20.125
10:0.0-10:50:0.0||${Another}Lets scale some text to double its size!|[animate=[500, 1000, [scale=2]]This text is getting huge
20.0.0-21.0.0|||[font=MaterialIcon]some_circle_ligature
'show-something'|Default||This will only be shown when the event id is given

#RESOURCE
Texture: RAMEN,url,../ramen.tga
Font: MaterialIcon,regular,data,AAEAAAAKAIAAAwAgT1MvMnwMf9s...

	Folie 1
	Folie 2
	Folie 3
	Folie 4

